Empirical Assessment of Human Learning Principles Inspired PSO Algorithms on Continuous Black-Box Optimization Testbed

نویسندگان

  • Muhammad Rizwan Tanweer
  • Abdullah Al-Dujaili
  • Sundaram Suresh
چکیده

This paper benchmarks the performance of one of the recent research directions in the performance improvement of particle swarm optimization algorithm; human learning principles inspired PSO variants. This article discusses and provides performance comparison of nine different PSO variants. The Comparing Continuous Optimizers (COCO) methodology has been adopted in comparing these variants on the noiseless BBOB testbed, providing useful insight regarding their relative efficiency and effectiveness. This study provides the research community a comprehensive account of suitability of a PSO variant in solving selective class of problems under different budget settings. Further, certain rectifications/ extensions have also been suggested for the selected PSO variants for possible performance enhancement. Overall, it has been observed that SL-PSO and MePSO are most suited for expensive and moderate budget settings respectively. Further, iSRPSO and TPLPSO have provided better solutions under cheap budget settings where iSRPSO has shown robust behaviour (better solutions over dimensions). We hope this paper would mark a milestone in assessing the human learning principles inspired PSO algorithms and used as a baseline for performance comparison.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Particle swarms for constrained optimization

Particle swarm optimization (PSO) is an optimization approach from the field of artificial intelligence. A population of so-called particles moves through the parameter space defined by the optimization problem, searching for good solutions. Inspired by natural swarms, the movements of the swarm members depend on own experiences and on the experiences of adjacent particles. PSO algorithms are m...

متن کامل

Adaptive particularly tunable fuzzy particle swarm optimization algorithm

Particle Swarm Optimization (PSO) is a metaheuristic optimization algorithm that owes much of its allure to its simplicity and its high effectiveness in solving sophisticated optimization problems. However, since the performance of the standard PSO is prone to being trapped in local extrema, abundant variants of PSO have been proposed by far. For instance, Fuzzy Adaptive PSO (FAPSO) algorithms ...

متن کامل

BQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems

Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...

متن کامل

On clonal selection

Clonal selection has been a dominant theme in many immune-inspired algorithms applied to machine learning and optimisation. We examine existing clonal selections algorithms for learning from a theoretical and empirical perspective and assert that the widely accepted computational interpretation of clonal selection is compromised both algorithmically and biologically. We suggest a more capable a...

متن کامل

Example-based learning particle swarm optimization for continuous optimization

Particle swarm optimization (PSO) is a heuristic optimization technique based on swarm intelligence that is inspired by the behavior of bird flocking. The canonical PSO has the disadvantage of premature convergence. Several improved PSO versions do well in keeping the diversity of the particles during the searching process, but at the expense of rapid convergence. This paper proposes an example...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015